Anomaly Detector Client (preview:1.1)

2025/10/21 • 9 deleted methods

DetectEntireSeries (removed)
Description This operation generates a model with an entire series, each point is detected with the same model. With this method, points before and after a certain point are used to determine whether it is an anomaly. The entire detection can give user an overall status of the time series.
Reference Link ¶

⚼ Request

POST:  /timeseries/entire/detect
{
body:
{
series:
[
{
timestamp: string ,
value: number ,
}
,
]
,
granularity: enum ,
customInterval: integer ,
period: integer ,
maxAnomalyRatio: number ,
sensitivity: integer ,
}
,
}

⚐ Response (200)

{
period: integer ,
expectedValues:
[
number ,
]
,
upperMargins:
[
number ,
]
,
lowerMargins:
[
number ,
]
,
isAnomaly:
[
boolean ,
]
,
isNegativeAnomaly:
[
boolean ,
]
,
isPositiveAnomaly:
[
boolean ,
]
,
}

⚐ Response (default)

{
code: enum ,
message: string ,
}
DetectLastPoint (removed)
Description This operation generates a model using points before the latest one. With this method, only historical points are used to determine whether the target point is an anomaly. The latest point detecting operation matches the scenario of real-time monitoring of business metrics.
Reference Link ¶

⚼ Request

POST:  /timeseries/last/detect
{
body:
{
series:
[
{
timestamp: string ,
value: number ,
}
,
]
,
granularity: enum ,
customInterval: integer ,
period: integer ,
maxAnomalyRatio: number ,
sensitivity: integer ,
}
,
}

⚐ Response (200)

{
period: integer ,
suggestedWindow: integer ,
expectedValue: number ,
upperMargin: number ,
lowerMargin: number ,
isAnomaly: boolean ,
isNegativeAnomaly: boolean ,
isPositiveAnomaly: boolean ,
}

⚐ Response (default)

{
code: enum ,
message: string ,
}
DetectChangePoint (removed)
Description Evaluate change point score of every series point
Reference Link ¶

⚼ Request

POST:  /timeseries/changepoint/detect
{
body:
{
series:
[
{
timestamp: string ,
value: number ,
}
,
]
,
granularity: enum ,
customInterval: integer ,
period: integer ,
stableTrendWindow: integer ,
threshold: number ,
}
,
}

⚐ Response (200)

{
period: integer ,
isChangePoint:
[
boolean ,
]
,
confidenceScores:
[
number ,
]
,
}

⚐ Response (default)

{
code: enum ,
message: string ,
}
TrainMultivariateModel (removed)
Description Create and train a multivariate anomaly detection model. The request must include a source parameter to indicate an externally accessible Azure storage Uri (preferably a Shared Access Signature Uri). All time-series used in generate the model must be zipped into one single file. Each time-series will be in a single CSV file in which the first column is timestamp and the second column is value.
Reference Link ¶

⚼ Request

POST:  /multivariate/models
{
modelRequest:
{
slidingWindow: integer ,
alignPolicy:
{
alignMode: enum ,
fillNAMethod: enum ,
paddingValue: integer ,
}
,
source: string ,
startTime: string ,
endTime: string ,
displayName: string ,
status: enum ,
errors:
[
{
code: string ,
message: string ,
}
,
]
,
diagnosticsInfo:
{
modelState:
{
epochIds:
[
integer ,
]
,
trainLosses:
[
number ,
]
,
validationLosses:
[
number ,
]
,
latenciesInSeconds:
[
number ,
]
,
}
,
variableStates:
[
{
variable: string ,
filledNARatio: number ,
effectiveCount: integer ,
startTime: string ,
endTime: string ,
errors:
[
{
code: string ,
message: string ,
}
,
]
,
}
,
]
,
}
,
}
,
}

⚐ Response (201)

{
location: string ,
}

⚐ Response (default)

{
code: string ,
message: string ,
}
GetMultivariateModel (removed)
Description Get detailed information of multivariate model, including the training status and variables used in the model.
Reference Link ¶

⚼ Request

GET:  /multivariate/models/{modelId}
{}

⚐ Response (200)

{
modelId: string ,
createdTime: string ,
lastUpdatedTime: string ,
modelInfo:
{
slidingWindow: integer ,
alignPolicy:
{
alignMode: enum ,
fillNAMethod: enum ,
paddingValue: integer ,
}
,
source: string ,
startTime: string ,
endTime: string ,
displayName: string ,
status: enum ,
errors:
[
{
code: string ,
message: string ,
}
,
]
,
diagnosticsInfo:
{
modelState:
{
epochIds:
[
integer ,
]
,
trainLosses:
[
number ,
]
,
validationLosses:
[
number ,
]
,
latenciesInSeconds:
[
number ,
]
,
}
,
variableStates:
[
{
variable: string ,
filledNARatio: number ,
effectiveCount: integer ,
startTime: string ,
endTime: string ,
errors:
[
{
code: string ,
message: string ,
}
,
]
,
}
,
]
,
}
,
}
,
}

⚐ Response (default)

{
code: string ,
message: string ,
}
DeleteMultivariateModel (removed)
Description Delete an existing multivariate model according to the modelId
Reference Link ¶

⚼ Request

DELETE:  /multivariate/models/{modelId}
{}

⚐ Response (204)

{}

⚐ Response (default)

{
code: string ,
message: string ,
}
DetectAnomaly (removed)
Description Submit detection multivariate anomaly task with the trained model of modelId, the input schema should be the same with the training request. Thus request will be complete asynchronously and will return a resultId for querying the detection result.The request should be a source link to indicate an externally accessible Azure storage Uri (preferably a Shared Access Signature Uri). All time-series used in generate the model must be zipped into one single file. Each time-series will be as follows: the first column is timestamp and the second column is value.
Reference Link ¶

⚼ Request

POST:  /multivariate/models/{modelId}/detect
{
detectionRequest:
{
source: string ,
startTime: string ,
endTime: string ,
}
,
}

⚐ Response (201)

{
location: string ,
}

⚐ Response (default)

{
code: string ,
message: string ,
}
GetDetectionResult (removed)
Description Get multivariate anomaly detection result based on resultId returned by the DetectAnomalyAsync api
Reference Link ¶

⚼ Request

GET:  /multivariate/results/{resultId}
{}

⚐ Response (200)

{
resultId: string ,
summary:
{
status: enum ,
errors:
[
{
code: string ,
message: string ,
}
,
]
,
variableStates:
[
{
variable: string ,
filledNARatio: number ,
effectiveCount: integer ,
startTime: string ,
endTime: string ,
errors:
[
{
code: string ,
message: string ,
}
,
]
,
}
,
]
,
setupInfo:
{
source: string ,
startTime: string ,
endTime: string ,
}
,
}
,
results:
[
{
timestamp: string ,
value:
{
contributors:
[
{
contributionScore: number ,
variable: string ,
}
,
]
,
isAnomaly: boolean ,
severity: number ,
score: number ,
}
,
errors:
[
{
code: string ,
message: string ,
}
,
]
,
}
,
]
,
}

⚐ Response (default)

{
code: string ,
message: string ,
}
ExportModel (removed)
Description Export multivariate anomaly detection model based on modelId
Reference Link ¶

⚼ Request

GET:  /multivariate/models/{modelId}/export
{}

⚐ Response (200)

{
$headers:
{
content-type: string ,
}
,
$schema: object ,
}

⚐ Response (default)

{
code: string ,
message: string ,
}